Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(4): 523-532, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38264987

RESUMO

Globin-coupled sensors constitute an important family of heme-based gas sensors, an emerging class of heme proteins. In this study, we have identified and characterized a globin-coupled sensor phosphodiesterase containing an HD-GYP domain (GCS-HD-GYP) from the human pathogen Vibrio fluvialis, which is an emerging foodborne pathogen of increasing public health concern. The amino acid sequence encoded by the AL536_01530 gene from V. fluvialis indicated the presence of an N-terminal globin domain and a C-terminal HD-GYP domain, with HD-GYP domains shown previously to display phosphodiesterase activity toward bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a bacterial second messenger that regulates numerous important physiological functions in bacteria, including in bacterial pathogens. Optical absorption spectral properties of GCS-HD-GYP were found to be similar to those of myoglobin and hemoglobin and of other bacterial globin-coupled sensors. The binding of O2 to the Fe(II) heme iron complex of GCS-HD-GYP promoted the catalysis of the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas CO and NO binding did not enhance the catalysis, indicating a strict discrimination of these gaseous ligands. These results shed new light on the molecular mechanism of gas-selective catalytic regulation by globin-coupled sensors, with these advances apt to lead to a better understanding of the family of globin-coupled sensors, a still growing family of heme-based gas sensors. In addition, given the importance of c-di-GMP in infection and virulence, our results suggested that GCS-HD-GYP could play an important role in the ability of V. fluvialis to sense O2 and NO in the context of host-pathogen interactions.


Assuntos
Globinas , Diester Fosfórico Hidrolases , Vibrio , Humanos , Diester Fosfórico Hidrolases/genética , Globinas/genética , Proteínas de Bactérias/química , Catálise , GMP Cíclico/metabolismo , Heme/química
2.
Sci Rep ; 13(1): 6892, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106030

RESUMO

A novel hybrid protein composed of a superoxide dismutase-active Cu(II) complex (CuST) and lysozyme (CuST@lysozyme) was prepared. The results of the spectroscopic and electrochemical analyses confirmed that CuST binds to lysozyme. We determined the crystal structure of CuST@lysozyme at 0.92 Å resolution, which revealed that the His15 imidazole group of lysozyme binds to the Cu(II) center of CuST in the equatorial position. In addition, CuST was fixed in position by the weak axial coordination of the Thr89 hydroxyl group and the hydrogen bond between the guanidinium group of the Arg14 residue and the hydroxyl group of CuST. Furthermore, the combination of CuST with lysozyme did not decrease the superoxide dismutase activity of CuST. Based on the spectral, electrochemical, structural studies, and quantum chemical calculations, an O2- disproportionation mechanism catalyzed by CuST@lysozyme is proposed.


Assuntos
Superóxido Dismutase , Superóxidos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Oxirredução , Muramidase/metabolismo , Cobre/química
3.
Front Mol Biosci ; 9: 967059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992274

RESUMO

Hemerythrin is an oxygen-binding protein originally found in certain marine invertebrates. Oxygen reversibly binds at its non-heme diiron center, which consists of two oxo-bridged iron atoms bound to a characteristic conserved set of five His residues, one Glu residue, and one Asp residue. It was recently discovered that several bacteria utilize hemerythrin as an oxygen- and redox-sensing domain in responding to changes in cellular oxygen concentration or redox status, and immediately adapt to these environmental changes in order to maintain important physiological processes, including chemotaxis and c-di-GMP synthesis and degradation. This Mini Review focuses on the recent progress made on structural and functional aspects of these emerging bacterial hemerythrin domain-containing oxygen and redox sensors, revealing characteristic features of this family of proteins.

4.
ACS Omega ; 6(50): 34912-34919, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963974

RESUMO

Heme-based gas sensors are an emerging class of heme proteins. AfGcHK, a globin-coupled histidine kinase from Anaeromyxobacter sp. Fw109-5, is an oxygen sensor enzyme in which oxygen binding to Fe(II) heme in the globin sensor domain substantially enhances its autophosphorylation activity. Here, we reconstituted AfGcHK with cobalt protoporphyrin IX (Co-AfGcHK) in place of heme (Fe-AfGcHK) and characterized the spectral and catalytic properties of the full-length proteins. Spectroscopic analyses indicated that Co(III) and Co(II)-O2 complexes were in a 6-coordinated low-spin state in Co-AfGcHK, like Fe(III) and Fe(II)-O2 complexes of Fe-AfGcHK. Although both Fe(II) and Co(II) complexes were in a 5-coordinated state, Fe(II) and Co(II) complexes were in high-spin and low-spin states, respectively. The autophosphorylation activity of Co(III) and Co(II)-O2 complexes of Co-AfGcHK was fully active, whereas that of the Co(II) complex was moderately active. This contrasts with Fe-AfGcHK, where Fe(III) and Fe(II)-O2 complexes were fully active and the Fe(II) complex was inactive. Collectively, activity data and coordination structures of Fe-AfGcHK and Co-AfGcHK indicate that all fully active forms were in a 6-coordinated low-spin state, whereas the inactive form was in a 5-coordinated high-spin state. The 5-coordinated low-spin complex was moderately active-a novel finding of this study. These results suggest that the catalytic activity of AfGcHK is regulated by its heme coordination structure, especially the spin state of its heme iron. Our study presents the first successful preparation and characterization of a cobalt-substituted globin-coupled oxygen sensor enzyme and may lead to a better understanding of the molecular mechanisms of catalytic regulation in this family.

5.
Macromol Rapid Commun ; 42(16): e2100274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34292631

RESUMO

Copper complexes act as catalysts for redox reactions to generate reactive oxygen species that destroy biomolecules and, therefore, are utilized to design drugs including antitumor and antibacterial medicines. Especially, catalytic reaction for hydrogen peroxide decomposition is important because it includes the process for generating highly toxic hydroxyl radical, i.e., Fenton-like reaction. Considering that multicoppers/hydrogen peroxide species are the important intermediates for the redox reaction, herein a polymer having copper complexes in the side chains is designed to facilitate the formation of the intermediates by building locally concentrated state of the copper complexes. The polymer increases their catalytic activities for hydrogen peroxide decomposition and promotes reactive oxygen species' generation, eventually leading to higher antibacterial activity. This reveals the virtue of building a locally concentrated state of catalysts on polymers toward drug design with low amounts of transition metals.


Assuntos
Cobre , Peróxido de Hidrogênio , Catálise , Oxirredução , Polímeros
6.
Arch Biochem Biophys ; 708: 108911, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971157

RESUMO

Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca2+-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteína-Arginina Desiminase do Tipo 3/química , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Cristalografia por Raios X , Proteínas Filagrinas , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteína-Arginina Desiminase do Tipo 3/antagonistas & inibidores
7.
ACS Omega ; 5(8): 4032-4042, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149230

RESUMO

S100A3 protein, a member of the EF-hand-type Ca2+-binding S100 protein family, undergoes a Ca2+-/Zn2+-induced structural change to a tetrameric state upon specific citrullination of R51 in human hair cuticular cells. To elucidate the underlying mechanism, we prepared recombinant mutant S100A3 proteins, including R51A, R51C, R51E, R51K, and R51Q, as potential models of post-translationally modified S100A3 and evaluated their biophysical and biochemical properties relative to wild-type (WT) S100A3 and WT citrullinated in vitro. Size exclusion chromatography (SEC) showed that R51Q formed a tetramer in the presence of Ca2+, while Ca2+ titration monitored by Trp fluorescence indicated that R51Q had Ca2+-binding properties similar to those of citrullinated S1003A. We therefore concluded that R51Q is the optimal mutant model of post-translationally modified S100A3. We compared the solution structure of WT S100A3 and the R51Q mutant in the absence and presence of Ca2+ and Zn2+ by SEC-small-angle X-ray scattering. The radius of gyration of R51Q in the metal-free state was almost the same as that of WT; however, it increased by ∼1.5-fold in the presence of Ca2+/Zn2+, indicating a large expansion in molecular size. By contrast, addition of Ca2+/Zn2+ to WT led to nonspecific aggregation in SEC analysis and dynamic light scattering, suggesting that citrullination of S100A3 is essential for stabilization of the Ca2+-/Zn2+-bound state. These findings will lead to the further development of structural analyses for the Ca2+-/Zn2+-bound S100A3.

8.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 3): 130-137, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133998

RESUMO

TRPV1, a member of the transient receptor potential (TRP) channels family, has been found to be involved in redox sensing. The crystal structure of the human TRPV1 ankyrin-repeat domain (TRPV1-ARD) was determined at 4.5 Šresolution under nonreducing conditions. This is the first report of the crystal structure of a ligand-free form of TRPV1-ARD and in particular of the human homologue. The structure showed a unique conformation in finger loop 3 near Cys258, which is most likely to be involved in inter-subunit disulfide-bond formation. Also, in human TRPV1-ARD it was possible for solvent to access Cys258. This structural feature might be related to the high sensitivity of human TRPV1 to oxidants. ESI-MS revealed that Cys258 did not form an S-OH functionality even under nonreducing conditions.


Assuntos
Repetição de Anquirina/fisiologia , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética , Anquirinas/química , Anquirinas/genética , Anquirinas/metabolismo , Cristalização/métodos , Humanos , Estrutura Secundária de Proteína , Canais de Cátion TRPV/metabolismo
9.
Biochemistry ; 59(8): 983-991, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045213

RESUMO

The second messenger bis(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates numerous important physiological functions in bacteria. In this study, we identified and characterized the first dimeric, full-length, non-heme iron-bound phosphodiesterase (PDE) containing bacterial hemerythrin and HD-GYP domains (Bhr-HD-GYP). We found that the amino acid sequence encoded by the FV185_09380 gene from Ferrovum sp. PN-J185 contains an N-terminal bacterial hemerythrin domain and a C-terminal HD-GYP domain, which is characteristic of proteins with PDE activity toward c-di-GMP. Inductively coupled plasma optical emission spectroscopy analyses showed that Bhr-HD-GYP contains 4 equiv of iron atoms per subunit, suggesting both hemerythrin and HD-GYP domains have non-heme di-iron sites. A redox-dependent spectral change expected for oxo-bridged non-heme iron with carboxylate ligands was observed, and this redox interconversion was reversible. However, unlike marine invertebrate hemerythrin, which functions as an oxygen-binding protein, Bhr-HD-GYP did not form an oxygen adduct because of rapid autoxidation. The reduced ferrous iron complex of the protein catalyzed the hydrolysis of c-di-GMP to its linearized product, 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), whereas the oxidized ferric iron complex had no significant activity. These results suggest that Bhr-HD-GYP is a redox and oxygen sensor enzyme that regulates c-di-GMP levels in response to changes in cellular redox status or oxygen concentration. Our study may lead to an improved understanding of the physiology of iron-oxidizing bacterium Ferrovum sp. PN-J185.


Assuntos
Proteínas de Bactérias/química , Hemeritrina/química , Diester Fosfórico Hidrolases/química , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Betaproteobacteria/enzimologia , Catálise , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Ensaios Enzimáticos , Hemeritrina/isolamento & purificação , Hidrólise , Ferro/química , Oxirredução , Diester Fosfórico Hidrolases/isolamento & purificação , Domínios Proteicos , Alinhamento de Sequência
10.
J Biol Chem ; 292(10): 3977-3987, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28130442

RESUMO

IcmF is a 5'-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system.


Assuntos
Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Metalochaperonas/metabolismo , Vitamina B 12/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Metilmalonil-CoA Mutase/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Domínios Proteicos , Transferases/metabolismo , Vitamina B 12/química
11.
J Biol Chem ; 290(33): 20466-76, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134562

RESUMO

Adenosylcobalamin-dependent isomerases catalyze carbon skeleton rearrangements using radical chemistry. We have recently demonstrated that an isobutyryl-CoA mutase variant, IcmF, a member of this enzyme family that catalyzes the interconversion of isobutyryl-CoA and n-butyryl-CoA also catalyzes the interconversion between isovaleryl-CoA and pivalyl-CoA, albeit with low efficiency and high susceptibility to inactivation. Given the biotechnological potential of the isovaleryl-CoA/pivalyl-CoA mutase (PCM) reaction, we initially attempted to engineer IcmF to be a more proficient PCM by targeting two active site residues predicted based on sequence alignments and crystal structures, to be key to substrate selectivity. Of the eight mutants tested, the F598A mutation was the most robust, resulting in an ∼17-fold increase in the catalytic efficiency of the PCM activity and a concomitant ∼240-fold decrease in the isobutyryl-CoA mutase activity compared with wild-type IcmF. Hence, mutation of a single residue in IcmF tuned substrate specificity yielding an ∼4000-fold increase in the specificity for an unnatural substrate. However, the F598A mutant was even more susceptible to inactivation than wild-type IcmF. To circumvent this limitation, we used bioinformatics analysis to identify an authentic PCM in genomic databases. Cloning and expression of the putative AdoCbl-dependent PCM with an α2ß2 heterotetrameric organization similar to that of isobutyryl-CoA mutase and a recently characterized archaeal methylmalonyl-CoA mutase, allowed demonstration of its robust PCM activity. To simplify kinetic analysis and handling, a variant PCM-F was generated in which the αß subunits were fused into a single polypeptide via a short 11-amino acid linker. The fusion protein, PCM-F, retained high PCM activity and like PCM, was resistant to inactivation. Neither PCM nor PCM-F displayed detectable isobutyryl-CoA mutase activity, demonstrating that PCM represents a novel 5'-deoxyadenosylcobalamin-dependent acyl-CoA mutase. The newly discovered PCM and the derivative PCM-F, have potential applications in bioremediation of pivalic acid found in sludge, in stereospecific synthesis of C5 carboxylic acids and alcohols, and in the production of potential commodity and specialty chemicals.


Assuntos
Cobamidas/metabolismo , Transferases Intramoleculares/metabolismo , Acil Coenzima A , Sequência de Aminoácidos , Cobamidas/química , Transferases Intramoleculares/química , Cinética , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xanthobacter/enzimologia
12.
Biochemistry ; 54(32): 5017-29, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26212354

RESUMO

The globin-coupled histidine kinase, AfGcHK, is a part of the two-component signal transduction system from the soil bacterium Anaeromyxobacter sp. Fw109-5. Activation of its sensor domain significantly increases its autophosphorylation activity, which targets the His183 residue of its functional domain. The phosphate group of phosphorylated AfGcHK is then transferred to the cognate response regulator. We investigated the effects of selected variables on the autophosphorylation reaction's kinetics. The kcat values of the heme Fe(III)-OH(-), Fe(III)-cyanide, Fe(III)-imidazole, and Fe(II)-O2 bound active AfGcHK forms were 1.1-1.2 min(-1), and their Km(ATP) values were 18.9-35.4 µM. However, the active form bearing a CO-bound Fe(II) heme had a kcat of 1.0 min(-1) but a very high Km(ATP) value of 357 µM, suggesting that its active site structure differs strongly from the other active forms. The Fe(II) heme-bound inactive form had kcat and Km(ATP) values of 0.4 min(-1) and 78 µM, respectively, suggesting that its low activity reflects a low affinity for ATP relative to that of the Fe(III) form. The heme-free form exhibited low activity, with kcat and Km(ATP) values of 0.3 min(-1) and 33.6 µM, respectively, suggesting that the heme iron complex is essential for high catalytic activity. Overall, our results indicate that the coordination and oxidation state of the sensor domain heme iron profoundly affect the enzyme's catalytic activity because they modulate its ATP binding affinity and thus change its kcat/Km(ATP) value. The effects of the response regulator and different divalent metal cations on the autophosphorylation reaction are also discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Myxococcales/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Monóxido de Carbono/metabolismo , Cátions Bivalentes/química , Ativação Enzimática , Globinas/metabolismo , Heme/química , Histidina Quinase , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Myxococcales/genética , Oxirredução , Oxigênio/metabolismo , Fosforilação , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
13.
Phys Chem Chem Phys ; 17(26): 17007-15, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26063650

RESUMO

YddV is a newly discovered signal transducer heme protein that recognizes O2 and CO. Structural differences in the ligand-bound heme complex in YddV reflect variations in catalytic regulation by O2 and CO. Time-resolved step-scan (TRS(2)) FTIR studies of the wild type and of the important in oxygen recognition and stability of the heme Fe(II)-O2 complex L65M, L65T, Y43A, Y43F and Y43W mutants were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. These mutations were designed to perturb the electrostatic field near the iron-bound gaseous ligand (CO) and also to allow us to investigate the communication pathway between the distal residues of the protein and heme. TRS(2)-FTIR spectra of YddV-heme-CO show that the heme propionates are in protonated and deprotonated states. Moreover, the rate of decay of the vibrations of amide I is on a time scale that coincides with the rate of rebinding of CO, which suggests that there is coupling between ligation dynamics in the distal heme environment and (i) relaxation of the protein backbone and (ii) the environment sensed by the heme propionates. The fast recombination rates in L65M, L65T and Y43W imply a significant role of L65 and Y43 in controlling the ligand dynamics. The implications of these results with respect to the role of the heme propionates and the charged or proton-donating residues in the distal pocket, which are crucial for stabilizing bound gaseous ligands, are discussed.


Assuntos
Proteínas de Escherichia coli/química , Globinas/química , Fósforo-Oxigênio Liases/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Fósforo-Oxigênio Liases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
14.
FEBS J ; 281(23): 5208-19, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25238584

RESUMO

The catalytic activity of a heme-based oxygen sensor phosphodiesterase from Escherichia coli (EcDOS) towards cyclic diGMP is regulated by the redox state of the heme iron complex in the enzyme's sensing domain and the association of external ligands with the iron center. Specifically, the Fe(II) complex is more active towards cyclic diGMP than the Fe(III) complex, and its activity is further enhanced by O2 or CO binding. In order to determine how the redox state and coordination of the heme iron atom regulate the catalytic activity of EcDOS, we investigated the flexibility of its isolated N-terminal heme-binding domain (EcDOS-heme) by monitoring its spectral properties at various hydrostatic pressures. The most active form of the heme-containing domain, i.e. the Fe(II)-CO complex, was found to be the least flexible. Conversely, the oxidized Fe(III) forms of EcDOS-heme and its mutants had relatively high flexibilities, which appeared to be linked to the low catalytic activity of the corresponding intact enzymes. These findings corroborate the suggestion, made on the basis of crystallographic data, that there is an inverse relationship between the flexibility of the heme-containing domain of EcDOS and its catalytic activity. The Fe(II)-CO form of the heme domain of a second heme-based oxygen sensor, diguanylate cyclase (YddV), was also found to be quite rigid. Interestingly, the incorporation of a water molecule into the heme complex of YddV caused by mutation of the Leu65 residue reduced the flexibility of this heme domain. Conversely, mutation of the Tyr43 residue increased its flexibility.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Diester Fosfórico Hidrolases/química , Fósforo-Oxigênio Liases/química , Catálise , Pressão Hidrostática , Oxirredução , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta
15.
J Inorg Biochem ; 140: 29-38, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046385

RESUMO

The globin-coupled oxygen sensor, YddV, is a heme-based oxygen sensor diguanylate cyclase. Oxygen binding to the heme Fe(II) complex in the N-terminal sensor domain of this enzyme substantially enhances its diguanylate cyclase activity which is conducted in the C-terminal functional domain. Leu65 is located on the heme distal side and is important for keeping the stability of the heme Fe(II)-O2 complex by preventing the entry of the water molecule to the heme complex. In the present study, it was found that (i) Escherichia coli-overexpressed and purified L65N mutant of the isolated heme-bound domain of YddV (YddV-heme) contained the verdoheme iron complex and other modified heme complexes as determined by optical absorption spectroscopy and mass spectrometry; (ii) CO was generated in the reconstituted system composed of heme-bound L65N and NADPH:cytochrome P450 reductase as confirmed by gas chromatography; (iii) CO generation of heme-bound L65N in the reconstituted system was inhibited by superoxide dismutase and catalase. In a concordance with the result, the reactive oxygen species increased the CO generation; (iv) the E. coli cells overexpressing the L65N protein of YddV-heme also formed significant amounts of CO compared to the cells overexpressing the wild type protein; (v) generation of verdoheme and CO was also observed for other mutants at Leu65 as well, but to a lesser extent. Since Leu65 mutations are assumed to introduce the water molecule into the heme distal side of YddV-heme, it is suggested that the water molecule would significantly contribute to facilitating heme oxygenase reactions for the Leu65 mutants.


Assuntos
Monóxido de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme/química , Leucina/genética , Mutação , Oxigênio/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/genética , Água/química
16.
J Biol Chem ; 288(39): 27702-11, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23928310

RESUMO

An emerging class of novel heme-based oxygen sensors containing a globin fold binds and senses environmental O2 via a heme iron complex. Structure-function relationships of oxygen sensors containing a heme-bound globin fold are different from those containing heme-bound PAS and GAF folds. It is thus worth reconsidering from an evolutionary perspective how heme-bound proteins with a globin fold similar to that of hemoglobin and myoglobin could act as O2 sensors. Here, we summarize the molecular mechanisms of heme-based oxygen sensors containing a globin fold in an effort to shed light on the O2-sensing properties and O2-stimulated catalytic enhancement observed for these proteins.


Assuntos
Proteínas de Escherichia coli/química , Regulação Enzimológica da Expressão Gênica , Globinas/química , Heme/química , Oxigênio/química , Fósforo-Oxigênio Liases/química , Sequência de Aminoácidos , Azotobacter vinelandii/enzimologia , Sítios de Ligação , Bordetella pertussis/enzimologia , Catálise , Domínio Catalítico , Quimiotaxia , Escherichia coli/enzimologia , Evolução Molecular , Hemoglobinas/química , Histidina Quinase , Dados de Sequência Molecular , Mioglobina/química , Ligação Proteica , Proteínas Quinases/química , Homologia de Sequência de Aminoácidos
17.
J Inorg Biochem ; 108: 163-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22005448

RESUMO

YddV is a globin-coupled oxygen sensor enzyme in that O(2) binding to the Fe(II) heme in the sensor domain substantially enhances its diguanylate cyclase activity. The Fe(III) heme-bound enzyme is also the active form. Amino acid sequence comparisons indicate that Leu65 is well conserved in globin-coupled oxygen sensor enzymes. Absorption spectra of the Fe(III) heme complexes of L65G, L65M, L65Q and L65T mutants of the isolated heme domain of YddV (YddV-heme) were substantially different from that of the wild-type protein. Specifically, Soret bands of the 6-coordinated high-spin Fe(III) complexes of mutant proteins (with H(2)O and His98 as axial ligands) were located at around 403-406 nm, distinct from that (391 nm) of the 5-coordinated high-spin Fe(III) complex of wild-type protein with His98 as the axial ligand. The autooxidation rate constant (>0.10 min(-1)) of the Fe(II)-O(2) complex of L65G was substantially higher than that (0.011 min(-1)) of the wild-type protein. Affinities of O(2) for the Fe(II) complexes of L65G and L65T were markedly higher than that for the wild-type protein. Thus, we suggest that the well-conserved Leu65 located in the heme distal side is critical for restricting water access to the heme distal side to avoid rapid autooxidation of YddV, which needs a stable Fe(II)-O(2) complex with a low autooxidation rate.


Assuntos
Monóxido de Carbono/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Compostos Férricos/química , Leucina/química , Oxigênio/química , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/metabolismo , Heme/química
18.
J Biol Chem ; 286(41): 35522-35534, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21852234

RESUMO

Two-component signal transduction systems regulate numerous important physiological functions in bacteria. In this study we have identified, cloned, overexpressed, and characterized a dimeric full-length heme-bound (heme:protein, 1:1 stoichiometry) globin-coupled histidine kinase (AfGcHK) from Anaeromyxobacter sp. strain Fw109-5 for the first time. The Fe(III), Fe(II)-O(2), and Fe(II)-CO complexes of the protein displayed autophosphorylation activity, whereas the Fe(II) complex had no significant activity. A H99A mutant lost heme binding ability, suggesting that this residue is the heme proximal ligand. Moreover, His-183 was proposed as the autophosphorylation site based on the finding that the H183A mutant protein was not phosphorylated. The phosphate group of autophosphorylated AfGcHK was transferred to Asp-52 and Asp-169 of a response regulator, as confirmed from site-directed mutagenesis experiments. Based on the amino acid sequences and crystal structures of other globin-coupled oxygen sensor enzymes, Tyr-45 was assumed to be the O(2) binding site at the heme distal side. The O(2) dissociation rate constant, 0.10 s(-1), was substantially increased up to 8.0 s(-1) upon Y45L mutation. The resonance Raman frequencies representing ν(Fe-O2) (559 cm(-1)) and ν(O-O) (1149 cm(-1)) of the Fe(II)-O(2) complex of Y45F mutant AfGcHK were distinct from those of the wild-type protein (ν(Fe-O2), 557 cm(-1); ν(O-O), 1141 cm(-1)), supporting the proposal that Tyr-45 is located at the distal side and forms hydrogen bonds with the oxygen molecule bound to the Fe(II) complex. Thus, we have successfully identified and characterized a novel heme-based globin-coupled oxygen sensor histidine kinase, AfGcHK, in this study.


Assuntos
Proteínas de Bactérias/química , Myxococcales/enzimologia , Oxigênio/química , Proteínas Quinases/química , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Heme/química , Heme/genética , Heme/metabolismo , Histidina Quinase , Mutação de Sentido Incorreto , Myxococcales/genética , Oxigênio/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Análise Espectral Raman
19.
Biochim Biophys Acta ; 1814(2): 326-33, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20887817

RESUMO

Mouse period homolog 2 (mPer2), an important transcriptional regulatory factor associated with circadian rhythms, is composed of two N-terminal PAS (PAS-A and PAS-B) domains and a C-terminal domain. The PAS-A domain of mPer2 binds the heme iron via a Cys axial ligand. A corresponding transcriptional regulatory factor, neuronal PAS 2 protein (NPAS2), also contains PAS-A and PAS-B domains at the N-terminus with heme-binding capability. In particular, the PAS-B domain appears important for protein-protein interactions critical for transcriptional regulation. In the present study, we examined the heme-binding characteristics of the isolated PAS-B domain of mPer2. Our experiments show that the Fe(III) heme binds the isolated PAS-B domain with a heme to protein stoichiometry of 1:1. The Fe(III) protein complex is suggested to consist of an admixture of 6-coordinated His-bound high-spin and low-spin complexes. Marked pH-dependent spectral changes were observed, in contrast to the spectrum of the Fe(III) bound PAS-A domain of mPer2, which appeared pH-resistant. Treatment with diethylpyrocarbonate abolished the heme-binding ability of this protein, supporting the proposal that His is the axial ligand. Heme dissociation was composed of two phases with rate constants of 4.3 × 10⁻4 s⁻¹ (50%) and 4.0 × 10⁻³ s⁻¹ (50%), which were markedly higher than that (1.5 × 10⁻7 s⁻¹) of the prototype heme protein, myoglobin. The Soret CD band of the H454A PAS-B mutant was significantly different from those of wild-type and other His mutant proteins, strongly suggesting that His454 is one of the axial ligands for the Fe(III) complex.


Assuntos
Heme/metabolismo , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Substituição de Aminoácidos , Animais , Sequência de Bases , Ritmo Circadiano , Primers do DNA/genética , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Ligantes , Camundongos , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Circadianas Period/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria
20.
Biochemistry ; 49(49): 10381-93, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21067162

RESUMO

YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.


Assuntos
Proteínas de Escherichia coli/química , Globinas/química , Hemeproteínas/química , Oxigênio/metabolismo , Fósforo-Oxigênio Liases/química , Tirosina/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Globinas/genética , Globinas/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Estabilidade Proteica , Sistemas do Segundo Mensageiro/genética , Tirosina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...